Scaling CQuUAL to millions of lines of
code and millions of users

Jeff Foster, Rob Johnson, John Kodumal and David Wagner

{jfoster,rtjohnso,jkodumal,daw } @cs.berkeley.edu.

UC Berkeley

Overview

Applications in the Linux kernel
® CquAL In the real world
o Getting “buy-in” from developers

User pointers In the Linux kernel

User programs pass pointers to the kernel as syscall
arguments

Malicious programs may pass invalid pointers
s Pointers to unmapped memory

s Pointers to kernel memory

Kernel must always check user pointers before
dereferencing them

» Corrupt kernel memory

» Read kernel memory

s Elevate privileges

s Crash system

copy _{to, front user do sanity checks and copies

User-kernel: GOOD!

int main () User code

{
struct foo *p;

ioctl (fd, SIOOGFOO, p):

}

Int dev_ioctl (int cnd, Iong\érg) Kernel code

{

struct foo *q;

ééby_to_user (arg, q, n);

User-kernel: BAD!

int main () User code

{
struct foo *p;

ioctl (fd, SIOOGFOO, p):

}

Int dev_ioctl (int cnd, Iong\arg) Kernel code

{

struct foo *q;

nencpy (arg, q, nj;

User-kernel: Type qualifiers

int dev_ioctl (int cnd, |ong $user arg)

{

struct foo * $kernel q;

mencpy (arg, d, n);

Annotate everything from user-space as $user
Only allow dereferencing of $ker nel pointers
#® Use type qualifier inference

© o o @

User-kernel: Results

Run file-by-file on Linux kernel
Found 2 new bugs

Found many (20-40) bugs that were already fixed
About 200 false positives

°

1 NIt functions and data

Linux places some kernel functions and data in special
“ I nit”sections

1 nit sections are deleted after kernel initialization

Thus non-__i nit functions must not
s call i1 nit functions
» dereference pointersto i ni t data

__Init functions may use non-__i nit functions and
data

1 Nnit: GOOD!

Int ' y _i1nit;
voi d dev _reset(int *x)
{

*x = 0;
}
void dev_ init() _init
{

dev_reset (&y);
}

1 nit:BAD!

Int ' y _i1nit;
voli d dev_reset (voi d)
{
y = 0;
}
void dev_ init() _init
{

dev_reset();

}

1 nl t: Effect qualifiers

int y $init;
voi d dev_reset(void) $noninit
{
y =0
}
void dev init() $init
{
dev_reset();
}

® Model sections as effects
® Perform effect inference

1 nlt: Results

Run file-by-file on Linux kernel
Found 2 functions which could be declared i ni t
About 6 false positives

Integrating with Linux build process

Easier for CquaL than MOPS
» MOPS inherently whole-program analysis
» CquaL can do whole-program or file-by-file
» Annotations can make file-by-file analysis sound

#® Linux 2.6 Makefile has hooks for file-by-file checkers
s make C=1 CHECK=kqual bzl mage
s $CHECK called with same args as gcc

kqual drop-in replacement for Linus’ Sparse
» Run gcc as preprocessor
» Run CquaL on results

Whole-program vs. file-by-file

#® Advantages of whole-program analysis
o Fewer annotations
o Soundness

Advantages of file-by-file analysis

» More annotations (programmers like them!)
Can be sound
Easy (don't have to emulate cc1, | d, etc.)
Supports incremental recompilation

Whole-program analysis impractical for large
programs

»
o
o
»

Other checkers

#® Sparse (Linus)
» Only checks, no inference
» Requires lots of casts
s Supposed to be sound, but apparently has bugs
» CquaL found bugs in code that Sparse passed

» MECA (Stanford)
s \Very precise (flow-sensitive, path-sensitive)
s Unsound
s CouaL found bugs in code that MECA passed

o H.UM.A.N.S.
s \ery precise
s Sound, but buggy
s CoquaL found bugs in code that humans had audited

How CQUAL got (a little) street cred

We found bugs that
s Were real
s Were exploitable
s Were non-obvious
» Were missed by all other tools / manual audits

Explained why other tools missed these bugs

°

Showed interest in working with developers
#® Got lucky (Greg KH)

© o o o @

Lessons

Developers want tools
Developers like annotations

Tools should work the way developers work
Soundness sells
Get credibility by finding bugs

°

Type qualifiers

ldea: decorate language’s built-in types with qualifiers
E.Q.

ref (ref (int))
becomes

a ref (3 ref (v int))

Perform type inference on qualifiers to find solutions for
a, (3, and ~

CQUAL IS a type qualifier inference engine for C

» Reduces program to constraint graph

» Uses CFL-reachability to achieve context-sensitivity

Working with C: int/pointer casts

int *x; x ref (x’ int)
int *w w ref (w’ int)
int vy y Int

int z; z Int

y = (1 nt)X;

Z =V,

w = (Int*)z;

Inferred constraints:
» z<y<z<w
What about ' and y’?

Working with C: int/pointer casts

int *x; x ref (x’ int)
int *w w ref (w’ int)
int vy; y_int

int z: z Int

y = (1 nt)X;

Z =V,

w = (Int*)z;

Inferred constraints:
» z<y<z<w
® Ahack: 2’/ =y, z = v’

Working with C: int/pointer casts

int *x; x ref (x’ int)
int *w w ref (w’ int)
int vy; y_int

int z: z Int

y = (1 nt)X;

Z =V,

w = (Int*)z;

Inferred constraints:

» z<y<z<w

® Ahack: 2’/ =y, z = v’

® Soxz’ < w (WRONG! should be '’ = w’)
#® Also causes lots of imprecision

Working with C: int/pointer casts

int *x; x ref (x’ int)

int *w w ref (w’ int)
I nt vy, y Int (y, VOid)
int z: z int (2’ void)
y = (1 nt)X;

z =Y,

w = (Int*)z;

Inferred constraints:
» z<y<z<w
o m’:y':z'z’w'

Sound and more precise

	Overview
	User pointers in the Linux kernel
	User-kernel: 	extcolor {darkgreen}{GOOD!}
	User-kernel: 	extcolor {red}{BAD!}
	User-kernel: Type qualifiers
	User-kernel: Results
	init {} functions and data
	init {}: 	extcolor {darkgreen}{GOOD!}
	init {}: 	extcolor {red}{BAD!}
	init {}: Effect qualifiers
	init {}: Results
	Integrating with Linux build process
	Whole-program vs. file-by-file
	Other checkers
	How cqual {} got (a little)
street cred
	Lessons
	Type qualifiers
	Working with C: int/pointer casts
	Working with C: int/pointer casts

