
Scaling CQUAL to millions of lines of
code and millions of users

Jeff Foster, Rob Johnson, John Kodumal and David Wagner

{jfoster,rtjohnso,jkodumal,daw}@cs.berkeley.edu.

UC Berkeley

Scaling CQUAL to millions of lines of code and millions of users – p.1

Overview

Applications in the Linux kernel

CQUAL in the real world

Getting “buy-in” from developers

Scaling CQUAL to millions of lines of code and millions of users – p.2

User pointers in the Linux kernel

User programs pass pointers to the kernel as syscall
arguments

Malicious programs may pass invalid pointers
Pointers to unmapped memory
Pointers to kernel memory

Kernel must always check user pointers before
dereferencing them

Corrupt kernel memory
Read kernel memory
Elevate privileges
Crash system

copy_{to,from}_user do sanity checks and copies

Scaling CQUAL to millions of lines of code and millions of users – p.3

User-kernel: GOOD!

int main ()
{
struct foo *p;
...
ioctl (fd, SIOCGFOO, p);
...

}

int dev_ioctl (int cmd, long arg)
{
struct foo *q;
...
copy_to_user (arg, q, n);
...

}

User code

Kernel code

@
@

@
@@R

Scaling CQUAL to millions of lines of code and millions of users – p.4

User-kernel: BAD!

int main ()
{
struct foo *p;
...
ioctl (fd, SIOCGFOO, p);
...

}

int dev_ioctl (int cmd, long arg)
{
struct foo *q;
...
memcpy (arg, q, n);
...

}

User code

Kernel code

@
@

@
@@R

Scaling CQUAL to millions of lines of code and millions of users – p.5

User-kernel: Type qualifiers

int dev_ioctl (int cmd, long $user arg)
{
struct foo * $kernel q;
...
memcpy (arg, q, n);
...

}

Annotate everything from user-space as $user

Only allow dereferencing of $kernel pointers

Use type qualifier inference

Scaling CQUAL to millions of lines of code and millions of users – p.6

User-kernel: Results

Run file-by-file on Linux kernel

Found 2 new bugs

Found many (20-40) bugs that were already fixed

About 200 false positives

Scaling CQUAL to millions of lines of code and millions of users – p.7

init functions and data

Linux places some kernel functions and data in special
“__init” sections

__init sections are deleted after kernel initialization

Thus non-__init functions must not
call __init functions
dereference pointers to __init data

__init functions may use non-__init functions and
data

Scaling CQUAL to millions of lines of code and millions of users – p.8

init: GOOD!

int y __init;

void dev_reset(int *x)
{
*x = 0;

}

void dev_init() __init
{
dev_reset(&y);

}

Scaling CQUAL to millions of lines of code and millions of users – p.9

init: BAD!

int y __init;

void dev_reset(void)
{
y = 0;

}

void dev_init() __init
{
dev_reset();

}

Scaling CQUAL to millions of lines of code and millions of users – p.10

init: Effect qualifiers

int y $init;

void dev_reset(void) $noninit
{
y = 0;

}

void dev_init() $init
{
dev_reset();

}

Model sections as effects

Perform effect inference

Scaling CQUAL to millions of lines of code and millions of users – p.11

init: Results

Run file-by-file on Linux kernel

Found 2 functions which could be declared __init

About 6 false positives

Scaling CQUAL to millions of lines of code and millions of users – p.12

Integrating with Linux build process

Easier for CQUAL than MOPS
MOPS inherently whole-program analysis
CQUAL can do whole-program or file-by-file
Annotations can make file-by-file analysis sound

Linux 2.6 Makefile has hooks for file-by-file checkers
make C=1 CHECK=kqual bzImage

$CHECK called with same args as gcc

kqual drop-in replacement for Linus’ Sparse
Run gcc as preprocessor
Run CQUAL on results

Scaling CQUAL to millions of lines of code and millions of users – p.13

Whole-program vs. file-by-file

Advantages of whole-program analysis
Fewer annotations
Soundness

Advantages of file-by-file analysis
More annotations (programmers like them!)
Can be sound
Easy (don’t have to emulate cc1, ld, etc.)
Supports incremental recompilation
Whole-program analysis impractical for large
programs

Scaling CQUAL to millions of lines of code and millions of users – p.14

Other checkers

Sparse (Linus)
Only checks, no inference
Requires lots of casts
Supposed to be sound, but apparently has bugs
CQUAL found bugs in code that Sparse passed

MECA (Stanford)
Very precise (flow-sensitive, path-sensitive)
Unsound
CQUAL found bugs in code that MECA passed

H.U.M.A.N.S.
Very precise
Sound, but buggy
CQUAL found bugs in code that humans had audited

Scaling CQUAL to millions of lines of code and millions of users – p.15

How CQUAL got (a little) street cred

We found bugs that
Were real
Were exploitable
Were non-obvious
Were missed by all other tools / manual audits

Explained why other tools missed these bugs

Showed interest in working with developers

Got lucky (Greg KH)

Scaling CQUAL to millions of lines of code and millions of users – p.16

Lessons

Developers want tools

Developers like annotations

Tools should work the way developers work

Soundness sells

Get credibility by finding bugs

Scaling CQUAL to millions of lines of code and millions of users – p.17

Type qualifiers

Idea: decorate language’s built-in types with qualifiers

E.g.

ref (ref (int))

becomes

α ref (β ref (γ int))

Perform type inference on qualifiers to find solutions for
α, β, and γ

CQUAL is a type qualifier inference engine for C
Reduces program to constraint graph
Uses CFL-reachability to achieve context-sensitivity

Scaling CQUAL to millions of lines of code and millions of users – p.18

Working with C: int/pointer casts

int *x;
int *w;
int y;
int z;
y = (int)x;
z = y;
w = (int*)z;

x ref (x′ int)
w ref (w′ int)
y int
z int

Inferred constraints:

x ≤ y ≤ z ≤ w

What about x′ and y′?

Scaling CQUAL to millions of lines of code and millions of users – p.19

Working with C: int/pointer casts

int *x;
int *w;
int y;
int z;
y = (int)x;
z = y;
w = (int*)z;

x ref (x′ int)
w ref (w′ int)
y int
z int

Inferred constraints:

x ≤ y ≤ z ≤ w

A hack: x′
= y, z = w′

Scaling CQUAL to millions of lines of code and millions of users – p.19

Working with C: int/pointer casts

int *x;
int *w;
int y;
int z;
y = (int)x;
z = y;
w = (int*)z;

x ref (x′ int)
w ref (w′ int)
y int
z int

Inferred constraints:

x ≤ y ≤ z ≤ w

A hack: x′
= y, z = w′

So x′ ≤ w′ (WRONG! should be x′
= w′)

Also causes lots of imprecision

Scaling CQUAL to millions of lines of code and millions of users – p.19

Working with C: int/pointer casts

int *x;
int *w;
int y;
int z;
y = (int)x;
z = y;
w = (int*)z;

x ref (x′ int)
w ref (w′ int)
y int (y′ void)
z int (z′ void)

Inferred constraints:

x ≤ y ≤ z ≤ w

x′
= y′

= z′
= w′

Sound and more precise

Scaling CQUAL to millions of lines of code and millions of users – p.20

	Overview
	User pointers in the Linux kernel
	User-kernel: 	extcolor {darkgreen}{GOOD!}
	User-kernel: 	extcolor {red}{BAD!}
	User-kernel: Type qualifiers
	User-kernel: Results
	init {} functions and data
	init {}: 	extcolor {darkgreen}{GOOD!}
	init {}: 	extcolor {red}{BAD!}
	init {}: Effect qualifiers
	init {}: Results
	Integrating with Linux build process
	Whole-program vs. file-by-file
	Other checkers
	How cqual {} got (a little)
street cred
	Lessons
	Type qualifiers
	Working with C: int/pointer casts
	Working with C: int/pointer casts

