
Compiling Relational Queries Over
Program Traces to Instrumentation

-or-
Beyond printf() Debugging

Simon Goldsmith

joint work with Robert O'Callahan and Alex Aiken

OSQ lunch

April 5, 2004

Overview

● PTQL
– expressive, declarative query language over program

traces

● Partiqle
– compiles PTQL query to instrumentation of Java bytecode

● better than manual instrumentation
● simpler than creating new dynamic analysis tool
● efficient enough to run interesting queries on real

world Java programs

Motivation

● Program specific questions
– Does my program do X?

– How many times?

– How long does it take?

– e.g. want a histogram of calls to foo() in third param

● Existing dynamic analysis tools
– have a question hard wired

● How to answer these questions?

State of the Art

● manual instrumentation: extra fields, globals, etc.

● a bunch of calls to printf()

● hack until trace size < 500 MB
● grep/sed/perl out the info you want

Does doTransaction() call sleep()?

public class DB {

 B b;

 void doTransaction() {

 b.y();

} }

public class B {

 void y() { sleep(); }

 void sleep() {

} }

● Obviously yes for this example

● How might one manually instrument to find out?

public class DB {

 B b;

 public static boolean active = false;

 void doTransaction() {

 active = true;

 b.y();

 active = false;

} }

public class B {

 void y() { sleep(); }

 void sleep() {

 if (DB.active) {

 System.out.println("call to sleep()!");

 }

} }

Failings of Manual Instrumentation

● adds complexity
● non-local
● wrong

– recursion

– exceptions

– threads

Solution

● We claim: such ad hoc dynamic analyses are naturally
represented as queries over the program trace

● advantages:

– all in one place
– declarative
– tool handles recursion, threads, exceptions

Terminology

● A program trace is a sequence of time-stamped
events that happen during program execution

● Each method invocation, object allocation, etc. that
occurs during program execution is an event.

● A query specifies a combination of events.

Outline

✔ Mom and Apple Pie

✔ Knock Down the Strawman
● Program Trace Query Language (PTQL)
● PTQL compiler: Partiqle
● Overhead of Partiqle's Instrumentation
● Related Work
● Future Work

Program Trace Query Language (PTQL)

● basically SQL query over program trace
● tables:

– MethodInvocation

– ObjectAllocation

● event happens => record in table
– e.g. call to foo() adds record to
MethodInvocation

● records have start/end timestamps
● interesting queries join several records together

PTQL: What's in the Records?

● MethodInvocation

– methodName

– implementingClass, declaringClass

– startTime, endTime

– receiver

– thread

– param0, param1, ...

– result

● ObjectAllocation

– allocTime, collectTime

– dynamicType

Example PTQL Query I

● Give me all the return values of method foo.

SELECT foo.result

 FROM MethodInvocation foo

 WHERE foo.methodName = “foo”

Does doTransaction() call sleep()?

SELECT doTrans.startTime, sleep.startTime

 FROM MethodInvocation doTrans,

 MethodInvocation sleep

 WHERE doTrans.methodName = 'doTransaction'

 AND doTrans.definingClass = 'DB'

 AND sleep.methodName = 'sleep'

 AND sleep.definingClass = 'B'

 AND doTrans.thread = sleep.thread

 AND doTrans.startTime < sleep.startTime

 AND sleep.endTime < doTrans.endTime

Some Java Anti-Pattern Finding Queries

● hashCode() agrees with equals()

● calls to hashCode() on same receiver return same
value

● no string s = s + ...; in a loop
● streams are closed <1000 ms after last read/write
● compareTo() is reflexive and transitive
● x.compareTo(y) > 0 iff y.compareTo(x) < 0

Outline

✔ Mom and Apple Pie

✔ Knock Down the Strawman

✔ Program Trace Query Language (PTQL)
● PTQL compiler: Partiqle
● Overhead of Partiqle's Instrumentation
● Related Work
● Future Work

Partiqle: Goal

● in: PTQL query + program + program input
● out: program output + set of query results

– one result = a tuple of events' fields

One Approach

● log program trace to a relational database
– add instrumentation to log events

● query database
● problem: does not scale

– too many events => traces too big

Partiqle: Approach

● ...like that but without the database
● push query evaluation into instrumentation
● evaluate the query online

– intermediate data kept in memory

● optimizations to minimize
– amount of data kept

– duration data kept

Partiqle

Java Bytecode

PTQL Query

JVM

Instrumented Bytecode

Query Results Program Output

Partiqle: Query Evaluation Strategy

● one runtime table per FROM item
● instrumentation where events happen

– create record

– fill out fields

– add to runtime table

● last event in query result triggers query evaluation

Partiqle: Optimization

● central tenet: discard events as early as possible
– static: no instrumentation to record event

– admission check: don't record irrelevant events

– retention check: discard event record when no longer
relevant

Consider the example from the intro...

Does doTransaction() call sleep()?

SELECT doTrans.startTime, sleep.startTime

 FROM MethodInvocation doTrans,

 MethodInvocation sleep

 WHERE doTrans.methodName = 'doTransaction'

 AND doTrans.definingClass = 'DB'

 AND sleep.methodName = 'sleep'

 AND sleep.definingClass = 'B'

 AND doTrans.thread = sleep.thread

 AND doTrans.startTime < sleep.startTime

 AND sleep.endTime < doTrans.endTime

Baseline Instrumentation

● two run-time tables:
– dts for doTrans

– ss for sleep

● instrumentation at start of each method:
– create record

– add it to tables dts and ss

● find all pairs in dts × ss that satisfy the query

Static Filtering of Instrumentation Sites

● use these conditions to filter instrumentation sites:
 doTrans.methodName = 'doTransaction'

 doTrans.definingClass = 'DB'

 sleep.methodName = 'sleep'

 sleep.definingClass = 'B'

● at start of DB.doTransaction()

– add a new record to dts

● at start of B.sleep()

– add a new record to ss

● check all pairs (doTrans, sleep) in dts × ss

Admission Check

● Only some calls to sleep() are interesting
 doTrans.thread = sleep.thread

 doTrans.startTime < sleep.startTime

 sleep.endTime < doTrans.endTime

– when record sleep added to ss, dts must contain
● a call to DB.doTransaction()
● that has already started but not ended
● on the same thread

● instrumentation at sleep() does an admission check

– if no suitable doTrans in dts drop this sleep

Output Query Results Incrementally

● At the start of sleep() we have a record sleep and
all doTrans records that could match with it

– we can output all results involving this sleep now

● No need to record the sleep, we are done with it
● Benefits:

– incremental output

– reduces size of tables

● Note: ss table always empty!
– intuition: table contains only records that might

contribute to future results

Retention Check
 doTrans.startTime < sleep.startTime

 sleep.endTime < doTrans.endTime

● At end of doTransaction(), all matching calls to
sleep() must have already started and ended

● instrumentation at end of doTransaction() does a
retention check
– if there is no suitable sleep in ss, drop this doTrans

– ss is always empty; check always fails; always drop
doTrans

– intuition: we can discard doTrans because no sleeps
need it anymore

Final Picture of Example

● start of doTransaction() : add record to dts
● end of doTransaction() : remove record from dts
● start of sleep() : output query result for matching

records in dts (if any)

Summary of Our Approach
● each item in FROM clause => table at runtime

FROM MethodInvocation doTrans => dts

 MethodInvocation sleep => ss

● each event => record in appropriate table
– call to doTransaction() => add record to dts

● static predicates filter instrumentation sites
● admission/retention checks prune tables
● timing analysis tells us when to remove records from

tables

SKIP: More on Timing Analysis

● Notice the time constraints from our example
x.startTime < y.startTime

y.endTime < x.endTime

● time constraints determine
– which tables to check in admission/retention checks

● when y starts, x must have already started
● when x ends, y must have ended

– when we have enough info to output results

● Let's look at how...

SKIP: Timing Graph
● Explicit and implicit constraints give us a partial

ordering of start and end events
● e.g. x.start < y.start, z.start < y.start, y.end < x.end, y.end <

z.end

● admission/retention checks examine predecessors in timing
graph

x.start

z.start

y.start y.end

x.end

z.end

SKIP: Post-dominator Nodes

● When do we have enough information to output a
result tuple?
– after all start events

– after all output information is available

– after all WHERE conditions can be verified

– the post-dominator node

● If no such node exists, the query requires information
to be held indefinitely and may be intrinsically costly

SKIP: When a Record is Done
● At the post-dominator node

– output all results involving the record

– remove the record from its table

● At end event for x
– do retention check to see if keeping x is necessary

– sometimes can prove that retention check will always fail
● E.g., events that are successors of post-dominator node in

timing graph

● When a record is removed
– may remove the last support from other records; their

admission/retention checks should be repeated

Outline

✔ Mom and Apple Pie

✔ Knock Down the Strawman

✔ Program Trace Query Language (PTQL)

✔ PTQL compiler: Partiqle
● Overhead of Partiqle's Instrumentation
● Related Work
● Future Work

Experiments

● ran anti-pattern queries (from before) on
– Apache Tomcat (webserver / java servlets) (17k methods)

– SpecJVM98

– some microbenchmarks

● measured slowdown and memory footprint
● found some performance bugs
● show overhead for tomcat

H
a

sh
C

o
d

e
C

o
n

si
st

e
n

t

E
q

u
a

lB
u

tIn
e

q
u

a
lH

a
sh

In
e

q
u

a
lB

u
tE

q
u

a
lH

as
h

S
tr

in
g

C
o

n
ca

ts

D
e

la
ye

d
C

lo
se

C
o

m
p

a
re

R
e

fle
xi

ve

C
o

m
p

a
re

A
n

ti

C
o

m
p

a
re

T
ra

n
si

tiv
e0.

1
1

10
10

0

Full

No-Adm

No-Post

Query

T
im

e
O

ve
rh

ea
d

(x
 B

as
el

in
e)

H
as

hC
od

eC
on

si
st

en
t

E
qu

al
B

ut
In

eq
ua

lH
as

h

In
eq

ua
lB

ut
E

qu
al

H
as

h

S
tr

in
gC

on
ca

ts

D
el

ay
ed

C
lo

se

C
om

pa
re

R
ef

le
xi

ve

C
om

pa
re

A
nt

i

C
om

pa
re

T
ra

ns
iti

ve

0.
1

1
10

10
0

Full

No-Adm

No-Post

Query

S
pa

ce
 O

ve
rh

ea
d

(x
 B

as
el

in
e)

Results

● Found several performance bugs (string concats)
– Jack (SpecJVM98 benchmark)

– Apache Tomcat's XML parser

– IBM JDK

● Found correct, but subtle code
– hash code consistency in Xerces XML parser

Future Work

● more thorough justification / case study
● representation change / performance issues
● subqueries / negation

● aggregation (ala SQL's GROUP BY)

● instrument for several queries at once
● add to the data model
● static analysis to prune instrumentation

Related Work

● Program Monitoring (e.g. PEDL/MEDL)
● DIDUCE / Daikon / Liblit
● Aspect Oriented Programming Languages
● Other trace-based query engines

Conclusion

● PTQL
– expressive, declarative query language over program

traces

● Partiqle
– compiles PTQL query to instrumentation of Java bytecode

● better than manual instrumentation
● simpler than creating new dynamic analysis tool
● efficient enough to run interesting queries on real

world Java programs

