Compiling Relational Queries Over
Program Traces to Instrumentation
_OI‘_

Beyond printf () Debugging

Simon Goldsmith
joint work with Robert O'Callahan and Alex Aiken
OSQ lunch
April 5, 2004



Overview

* PTQL

— expressive, declarative query language over program
traces

* Partigle
— compiles PTQL query to mstrumentation of Java bytecode

* better than manual instrumentation

* simpler than creating new dynamic analysis tool

* cfficient enough to run mnteresting queries on real
world Java programs




Motivation

* Program specific questions

— Does my program do X?

— How many times?

— How long does 1t take?

— e.g. want a histogram of calls to f oo() 1n third param
* Existing dynamic analysis tools
— have a question hard wired

* How to answer these questions?



State of the Art

* manual instrumentation: extra fields, globals, etc.

e a bunchof callsto printf ()

* hack until trace size < 500 MB
* orep/sed/perl out the info you want



Does doTr ansacti on() call sl eep() ?

public class DB {
B b;
voi d doTransaction() {
b.y();
Pl

public class B {

void y() { sleep(); }
voi d sl eep() {

o

* Obwiously yes for this example

* How might one manually mstrument to find out?



public class DB {
B b;
public static bool ean active = fal se;
vol d doTransaction() {
active = true;

b.y();

active

fal se:

b

public class B {

void y() { sleep(); }
voi d sl eep() {

| f (DB.active) {

Systemout.printin("call to sleep()!");

b



Failings of Manual Instrumentation

* adds complexity
* non-local

® wrong

— recursion

— exceptions
— threads



Solution

* We claim: such ad hoc dynamic analyses are naturally
represented as queries over the program trace

* advantages:

— all 1n one place
— declarative

— tool handles recursion, threads, exceptions



Terminology

* A program trace is a scquence of time-stamped
events that happen during program execution

* Each method mvocation, object allocation, etc. that
occurs during program execution 1S an event.

* A query specifies a combination of events.



Outline

v Mom and Apple Pie

v Knock Down the Strawman
* Program Trace Query Language (PTQL)
* PTQL compiler: Partigle

* Overhead of Partigle's Instrumentation
* Related Work

e Future Work



Program Trace Query Language (PTQL)

basically SQL query over program trace

tables:

- Met hodl nvocat | on
— () ect Al | ocat i on

event happens => record 1n table

— e.g. call to f 00() adds record to
Met hodl nvocat | on

records have start/end timestamps

interesting queries join several records together



PTQL: What's in the Records?

e et hodl nvocati on

- nmet hodNane
— 1 npl enent i ngd ass, decl ari ngd ass
- startTi ne, endTi nme
— recei ver
— t hread
- paran®, parani,
- resul t
e (hjectAlocation

—allocTinme, collectT nme
- dynam cType



Example PTQL Query I

e (Give me all the return values of method f 00.
SELECT foo.result
FROM Met hodl nvocati on f oo
WHERE f 00. net hodNane = “f 00”



Does doTr ansacti on() call sl eep() ?

SELECT doTrans.startTine, sleep.startTine
FROM Met hodl nvocat i on doTr ans,
Met hodl nvocati on sl eep

WHERE doTrans. net hodNane = ' doTransacti on'
AND doTrans. definingdass ="'DB
AND sl eep. net hodNanme = ' sl eep!
AND sleep.definingdass ='B
AND doTrans.thread = sl eep.thread
AND doTrans.startTine < sleep.startTine

AND sl eep. endTi ne < doTrans. endTi ne



Some Java Anti-Pattern Finding Queries

hashCode() agrees with equal s()

calls to hashCode() on same receiver return same
value

no strings = s + ...; maloop
streams are closed <1000 ms after last read/write

conpar eTo() 1s reflexive and transitive
X.conpareTo(y) > O iff y. conpareTo(x) < O



v Mom and App]

Outline

e Pie

v’ Knock Down t|

v Program Irace

e Strawman
Query Language (PTQL)

* PTQL compiler: Partiqle

* Overhead of Partigle's Instrumentation

e Related Work
e Future Work



Partigle: Goal

* in: PTQL query + program + program input
* out: program output + set of query results

— one result = a tuple of events' fields



One Approach

* log program trace to a relational database
— add instrumentation to log events

* query database

* problem: does not scale

— too many events => traces too big



Partigle: Approach

...Iike that but without the database

push query evaluation into instrumentation

evaluate the query online

— mtermediate data kept in memory
optimizations to mimnimize

— amount of data kept

— duration data kept



Java Bytecode

|

PTOQL Query =

Partigle

|

Instrumented Bytecode

|

JVM

—

Query Results

Program Output



Partigle: Query Evaluation Strategy

* one runtime table per FROM item

* instrumentation where events happen

— create record
— fill out fields

— add to runtime table

* Jast event 1n query result triggers query evaluation



Partigle: Optimization

* central tenet: discard events as early as possible

— static: no 1instrumentation to record event
— admission check: don't record 1rrelevant events

— retention check: discard event record when no longer
relevant

Consider the example from the intro...



Does doTr ansacti on() call sl eep() ?

SELECT doTrans.startTine, sleep.startTine
FROM Met hodl nvocat i on doTr ans,
Met hodl nvocati on sl eep

WHERE doTrans. net hodNane = ' doTransacti on'
AND doTrans. definingdass ="'DB
AND sl eep. net hodNanme = ' sl eep!
AND sleep.definingdass ='B
AND doTrans.thread = sl eep.thread
AND doTrans.startTine < sleep.startTine

AND sl eep. endTi ne < doTrans. endTi ne



Baseline Instrumentation

* two run-time tables:
- dt s fordoTr ans
— Ss for sl eep
* 1nstrumentation at start of each method:

— create record
— add it to tables dt S and SS

e find all pairsindt s X ss that satisty the query



Static Filtering of Instrumentation Sites

* use these conditions to filter instrumentation sites:
doTr ans. net hodNane = ' doTransacti on'
doTrans. defi ni ngd ass = ' DB
sl eep. net hodNane = ' sl eep’

sl eep.definingdass = 'B
e atstart of DB. doTr ansact 1 on()
— add a new record to dt S
e atstart of B. sl eep()
— add a new record to SS

e check all pairs (doTr ans, sl eep)indt s X ss



Admission Check

* Only some calls to sl eep() are interesting
doTrans.thread = sl eep.thread
doTrans.startTine < sl eep.startTi ne

sl eep. endTi ne < doTrans. endTi ne

— when record sl eep added to ss, dt s must contain

e acall to DB. doTr ansact i on()
* that has already started but not ended

¢ on the same thread

e 1nstrumentation at sl eep() does an admission check

— 1f no suitable doTr ans 1n dt s drop this sl eep



Output Query Results Incrementally

* At the start of sl eep() we have a record sl eep and
all doTr ans records that could match with it

— we can output all results involving this sl eep now

* No need to record the sl eep, we are done with 1t

* Benefits:

— 1ncremental output

— reduces size of tables
* Note: ss table always empty!

— 1ntuition: table contains only records that might
contribute to future results



Retention Check

doTrans.startTine < sl eep.startTine
sl eep. endTi ne < doTrans. endTi ne

* At end of doTransacti on(), all matching calls to
sl eep() must have already started and ended

* nstrumentation at end of doTr ansacti on() does a
retention check

— 1f there 1s no suitable sl eep 1n ss, drop this doTr ans

- ss 1s always empty; check always fails; always drop
doTr ans

— 1ntuition: we can discard doTr ans because no sl eeps
need 1t anymore



Final Picture of Example

* start of doTransacti on() : add record to dt s

* end of doTransacti on() : remove record fromdt s

* start of sl eep() : output query result for matching
records indts (if any)



Summary of Our Approach

each 1item 1n FROMclause => table at runtime
FROM Met hodl nvocati on doTrans => dts

Met hodl nvocati on sl eep => ss

each event => record 1n appropriate table
— call to doTransacti on() = add record to dt s
static predicates filter instrumentation sites

admussion/retention checks prune tables

timing analysis tells us when to remove records from
tables



SKIP: More on Timing Analysis

* Notice the time constraints from our example
X.startTime < y.startTine
y.endTi me < Xx.endTi ne

* time constraints determine

— which tables to check in admission/retention checks

* when y starts, X must have already started

* when x ends, y must have ended

— when we have enough info to output results

e [et'slook at how...



SKIP: Timing Graph
* Explicit and implicit constraints give us a partial
ordering of start and end events

* ¢.g. Xx.start <y.start, z.start < y.start, y.end < x.end, y.end <

z.end

e adnussion/retention checks examine predecessors m timing
oraph



SKIP:

Post-dominator Nodes

* When do we have enough information to output a

result tuple?

— after all start events

— after all output information 1s available

— after all WH

HRE conditions can be verified

— the post-dominator node

* [fno such node exists, the query requires information
to be held indefinitely and may be intrinsically costly



SKIP: When a Record 1s Done

* At the post-dominator node

— output all results involving the record

— remove the record from its table
* At end event for x

— do retention check to see i1f keeping x 1s necessary

— sometimes can prove that retention check will always fail

* E.g., events that are successors of post-domiator node in
timing graph

* When a record 1s removed

— may remove the last support from other records; their
admission/retention checks should be repeated



Outline

v Mom and Apple Pie

v Knock Down the Strawman

v Program Trace Query Language (PTQL)
v PTQL compiler: Partigle

* Overhead of Partigle's Instrumentation
* Related Work

e Future Work



Experiments

ran anti-pattern queries (from before) on

— Apache Tomcat (webserver / java serviets) (17k methods)
- SpecJVMO98

— some microbenchmarks

measured slowdown and memory footprint
found some performance bugs

show overhead for tomcat



No-Post

B No-Adm

aAljIsuel | aiedwo)

nuyasedwon

aAIXa|jayaledwon

aso|DpaAelag

Query

sjeouonbung

Ly

yseH|enb3ingjenbau

yseH|enbaujngjenb3

JU8)SISU0DBPODHYSEH

|

0L 0 ! 10
(suljaseg x) pesaylan) awl |



No-Post

aAlIsuel | aledwo)

nuyaledwo)

aAIXa|joyaledwo)

aso|Dpalelag

sjeouonbuns

yseH|enb3ingjenbauj

yseH|enbaujngjenb3g

JUS]SISUODBPODYSEH

[IIiIIII

0oL 0 ) 10
(suljaseg x) pesytan) aoedg

Query



Results

* Found several performance bugs (string concats)

— Jack (SpecJVM98 benchmark)
— Apache Tomcat's XML parser
- IBM JDK

* Found correct, but subtle code

— hash code consistency in Xerces XML parser



Future Work

more thorough justification / case study
representation change / performance 1ssues
subqueries / negation

aggregation (ala SQL's GROUP BY)
instrument for several queries at once

add to the data model

static analysis to prune instrumentation



Related Work

* Program Momnitoring (¢.g. PEDL/MEDL)
* DIDUCE / Daikon / Liblit
* Aspect Oriented Programming Languages

* Other trace-based query engines



Conclusion

* PTQL

— expressive, declarative query language over program
traces

* Partigle
— compiles PTQL query to mstrumentation of Java bytecode

* better than manual instrumentation

* simpler than creating new dynamic analysis tool

* cfficient enough to run mnteresting queries on real
world Java programs




