
Note: For whatever reason, fi ligatures print as British pound

signs, £, in the pdf-translated version of these slides. Sorry!

/ 1

Current Kansas personnel

Torben Amtoft (just arrived from Heriot-Watt; does type-based

analysis of process-based systems)

Anindya Banerjee (language-based security)

David Schmidt (abstract interpretation)

Gurvan le Guernic (PhD student, joint with Thomas Jensen, Univ.

Rennes, France)

Élodie-Jane Sims (PhD student, joint with Radhia Cousot, École

Polytechnique, France)

On a parallel path: Matthew Dwyer, John Hatcliff, multiple

students (Bandera Java-model-checking project)

/ 2

Current activities

Banerjee/Naumann: “Heap-design patterns” for representation
independence. Current case studies: storage encapsulation in
ownership-transfer situations; storage sharing in the iterator
design pattern.

Connections between access control (viz., stack inspection) and
information ¤ow control.

le Guernic/Banerjee/Schmidt: Formalization of Myers and Liskov’s
decentralized label (“declassi£cation”) model of information-¤ow
control by typing rules and powerdomain semantics.
Generalization to “security design patterns.”

Sims/Schmidt: Application of separation logic to alias analysis and
extension of separation logic by £xed point operators.

Schmidt: Formalization of under- and over-approximating abstract
interpretations with powerdomains.

/ 3

Abstract Models of Shape
Branching- (and Linear-) Time

What do heap-shape analysis and process
algebra have in common?

David Schmidt

Kansas State University

(-: / 4

Labelled Kripke transition systems

〈Σ, {τ` ⊆ Σ× Σ | ` ∈ Label}, IΣ : Σ → P(Atom)〉

Σ = {s0, s1, s2}

τα = {(s0, s1), (s1, s1)}

τβ = {(s0, s2), (s1, s2)}

IΣ(s0) = {happy}

IΣ(s1) = {sad}

IΣ(s2) = {happy, sad}

s0

s1

s2

α
α

β
β

happy

sad

happy, sad

We might identify initial states, Σ0 ⊆ Σ, also.

(-: / 5

Graph models apply to storage shapes

Σ = {c0, c1, c2}

τhead = {(c0, c0)}

τtail = {(c0, c2),

(c1, c1), (c1, c2)}

IΣ(c0) = {it}

IΣ(c1) = {}

IΣ(c2) = {x, y}

.

c0 c1

c2

tail
head

y

it

tail

tail

x

Rather than states, the nodes now represent cells/objects.

(-: / 6

A Galois Connection abstracts the cells

Let A be a £nite set of tokens that model sets of dynamically

allocated storage cells:

{c0,c1,c2}

{c0,c1} {c0,c2} {c1,c2}

{c0} {c1} {c2}

{}

P(C) A

a0 a12
γ

It’s common to make A into a complete lattice: ⊥ denotes no cells

at all, and > denotes all allocated cells.

γ is the upper adjoint of a Galois connection; it indicates which

cells are denoted by which tokens.

(-: / 7

What does an abstract transition denote?

what may possibly execute:

if b

...

elsethen

b !b

s1 s2

if b

...

elsethen

b

s1

or what may possibly be pointed:

(-: / 8

What does “dashed” denote? a1a0

Overapproximation — 1/2 — may/possibly: The corresponding

concrete structure may or may not possess this transition, but all

concrete transitions are “covered” by transitions of this form.

In operational semantics and process algebra, this is formalized

as a simulation:

Given γ : A → P(C), KC = 〈C, τC, IC〉, KA = 〈A, τA, IA〉, KC is

γ-simulated by KA (written KC¢γKA)

iff for all a ∈ A, c ∈ γ(a), c ′ ∈ C,

1. IC(c) ⊆ IA(a)

2. c → c ′ implies there exists a ′ ∈ A such that c ′ ∈ γ(a ′) and

a− − → a ′.

That is, KA “mimicks” the transitions and atomic properties of KC.

(-: / 9

Example over-approximation: A = {⊥, a0, a12,>}

α{} = ⊥

α{c0} = a0

α{c1} = a12 = α{c2}

αS = >, otherwise

γ(⊥) = {}

γ(a0) = {c0}

γ(a12) = {c1, c2}

γ(>) = {c0, c1, c2}

IA(a) = ∪{IC(c) | c ∈ γ(a)}

γ(a)

γ(a’)

c εif

and then

εc’
a0 a12

c0

c1

c2

(-: / 10

What properties can we safely check?

Aliasing — a is possibly tail-aliased:

isAliased(a) = ∃x.∃y.τtail(x, a) ∧ τtail(y, a) ∧ x 6= y

a |= (∃τ−1
tail.at x) ∧ (∃τ−1

tail.at y)

(recall a |= ∃R.φ iff exists a ′ such that R(a, a ′) and a ′ |= φ)

isAliased(a) = ∃x.∃y.(x 7→ , a) ∗ (y 7→ , a) ∗ true

that is, ∃x.∃y.τtail(x, a) ∗ τtail(y, a) ∗ true

Reachability — a is possibly reachable from x:

rx(a) = τ∗tail(x, a)

a |= µZ.at x∨ ∃τ−1
tail.Z

rx(a) =lfp (x = a) ∨ (∃a ′.τtail(x, a
′) ∗ ra ′(a))

We can refute such “possibility” properties.

(-: / 11

Reachability — necessarily, all nodes reached from a are “happy”:

Happy(a) = ∀y.τ∗tail(a, y) ⊃ happy ∈ IA(y)

a |= νZ.isHappy∧ ∀τtail.Z

(Assumes that IA(a) ⊆ IC(c), when c ∈ γ(a).)

That is, there does not exist a reachable node/cell that lacks

happy.

End cell — necessarily, there is no cell linked to a:

noTail(a) = ∀y.¬τtail(a, y)

a |= ∀τtail.false

That is, there does not exist a tail-transition from a.

With an over-approximation model, we validate universal

properties and refute existential ones.

(-: / 12

What does an abstract transition denote (2)?

what must necessarily execute:

if b

...

elsethen

b

s1

if b

...

elsethen

b !b

s1 s2

what must necessarily be linked:

(-: / 13

What does “solid” denote? a1a0

Underapproximation — 1 — must/necessarily: All corresponding

concrete structures must possess this transition.

This is a (dual) simulation:

Given γ : A → P(C), KC = 〈C, τC, IC〉, KA = 〈A, τA, IA〉, KA is

dual-γ-simulated by KC (written KA ¢−1
γ KC)

iff for all a ∈ A, c ∈ γ(a), a ′inA,

1. IC(c) ⊇ IA(a)

2. a −−→ a ′ implies there exists c ′ ∈ C such that c ′ ∈ γ(a ′) and

c −−→ c ′.

That is, KC “mimicks” the must-transitions and atomic

must-properties of KA.

(-: / 14

Example under-approximation: A = {⊥, a0, a12,>}

α{} = ⊥

α{c0} = a0

α{c1} = a12 = α{c2}

αS = >, otherwise

γ(⊥) = {}

γ(a0) = {c0}

γ(a12) = {c1, c2}

γ(>) = {c0, c1, c2}

IA(a) = ∩{IC(c) | c ∈ γ(a)}

a0 a12 c0

c1

c2

(The transitions from ⊥ are technically correct but are practically

useless; you can ignore them.)

(-: / 15

What properties can we safely check?

a is necessarily reachable from x:

rx(a) = τ∗tail(x, a)

a |= µZ.at x∨ ∃τ−1
tail.Z

rx(a) =lfp (x = a) ∨ (∃a ′.τtail(x, a
′) ∗ ra ′(a))

possibly, all cells reached from a are “happy”:

isSafe(a) = ∀y.τ∗tail(a, y) ⊃ happy ∈ IA(y)

a |= νZ.isHappy∧ ∀τtail.Z

(Assumes that IA(a) ⊇ IC(c), when c ∈ γ(a).)

That is, there does not exist a necessarily-reachable cell/node that
lacks happy — the possibility that all reachable cells are happy
still exists.

With an under-approximation model, we validate existential
properties and refute universal ones.

(-: / 16

Mixed and modal transition systems

A mixed Kripke transition system is two systems, an under

approximation and an over approximation, with the same cell/state

set:

〈Σ, τmust, τmay, Imust, Imay〉

When τmust ⊆ τmay and Imust v Imay, the system is modal.

When τmust = τmay and Imust = Imay, the system is concrete —

an ordinary Kripke transition system.

a0 a12
a0 a12

(-: / 17

Simulation is replaced by re£nement — simulations in two

directions:

Given MC = 〈C, τmust
C , τ

may
C , Imust

C , Imay
C 〉 and

MA = 〈A, τmust
A , τ

may
A , Imust

A , Imay
A 〉,

MC re£nesMA iff

〈C, τmay
C , Imay

C 〉¢γ 〈A, τ
may
A , Imay

A 〉

and

〈A, τmust
A , Imust

A 〉¢−1
γ 〈C, τmust

C , Imust
C 〉

That is, MA’s may-parts simulate MC’s, and MC’s must-parts

dual-simulate MA’s.

When MC re£nesMA,

¨ MC’s under-approximation is larger (more precise) than MA’s

¨ MC’s over-approximation is smaller (more precise) than MA’s.

(-: / 18

We can validate a full predicate logic on a MTS

We validate universal subformulae on the upper-approximation

and existential subformulae on the lower-approximation, jumping

“back and forth” as needed.

We validate a negated formula by refuting it on the dual

approximation.

Example: a12a0

a0 |=under ∃τ.∀τ.¬at a0

iff a12 |=over ∀τ.¬at a0

iff a12 |=over ¬at a0

iff a12 6|=under at a0

iff true

(-: / 19

For a MTS, where τmust ⊆ τmay, there are only three possible
outcomes: φ necessarily holds, φ possibly holds, φ not possibly
holds.

Sagiv/Reps/Wilhelm TVLA models have must-may cells such that
(i) a must-cell can not be split (or merged) in a re£nement; (ii) a
may-cell can not be merged in a re£nement. We might de£ne an
extension of MTS with such cells. (We might also restrict γ!)

The re£nement relation, quotiented, is a partial ordering in a dcpo
of modal transition systems. Given MTS, M, its re£nements form
a Kripke model unto which we can apply a modal logic:

¨ M |= 2φ — all re£nements satisfy φ (intuitionistic)

¨ M |= 23φ — always possible to re£ne to satisfy (dense)

¨ Generalized model checking examines only the limit points of
M’s Kripke model. (Aprés Michael Huth, the three coincide.)

(-: / 20

“Store-less” models: Path sets

Jonkers and Deutsch proposed “storeless” (heap-less) models:

.

k3

k2k1

fst snd
fst

x

y

it

fst snd

snd

The heap shape is modelled by right-regular equivalence sets of
paths from the “entry point,” it:

{fsti | i ≥ 0} {fsti.snd | i ≥ 0}

{fsti.snd.fst | i ≥ 0} {fsti.snd2 | i ≥ 0}

Deutsch developed clever fsa over-approximations of the
equivalence classes.

(-: / 21

Blanchet’s path models

Many questions regarding escapes, leaks, and aliases are

answered by the paths from one object of interest to another, e.g.,

from a global variable to the heap’s entry point:

k1 k2

k3

.

snd
fst snd

fst

x

y

it

fst snd

{y.snd−1.fsti.(fst−1)j | i, j ≥ 0}

∪ {x.fst.snd−1.fsti.(fst−1)j | i, j ≥ 0}

The paths have been normalized by the cancellation law,

fst−1.fst ≡ ε

The cancellation law gives the paths a pleasant, regular format.

(-: / 22

The paths are traces through the heap, and questions about the

traces can be asked in the language of linear temporal logic. Let π

be a trace from variable x to it, the result/heap-entry.

We can ask standard questions:

¨ Is part of x embedded in the result? π |= at x∧ F(des−1)

¨ Does x’s cell itself escape in the result? π |= at x∧G(des−1)

¨ Is part of x aliased to y? π |= F(at y)

¨ Is x a cyclic structure? π |= GF(at x)

(-: / 23

Summary

¨ For analyses that deduce properties of paths, under- and

over-approximation issues are crucial.

¨ Branching-time models of heap are widely used, but maybe

Deutsch and Blanchet know better — end-users prefer

linear-time logic over branching time; shouldn’t we?

¨ Integration of spatial logics into heap abstraction and static

analysis seems worth a try.

(-: / 24

References

1. This talk: www.cis.ksu.edu/~schmidt/papers

2. Blanchet PhD thesis

3. CousotCousot POPL 1979

4. Dams, Gerth, Grumberg ACM TOPLAS

5. Deutsch PhD thesis

6. Huth, Jagadeesan, Schmidt MSCS paper

7. Larsen Concur paper

8. Reps, Sagiv, Wilhelm POPL 1998

9. Vardi ETAPS 2000 paper

(-: / 25

