
An untrusted verifier for Typed
Assembly Language

Adam Chlipala



Basic idea

� Typed Assembly Language (TAL) adds a type system over an architecture’s assembly
language, allowing type safety proofs for a useful subset of machine code programs.

� The Open Verifier is a toolkit for abstract interpretation of machine code programs to
prove memory safety.

� An untrusted plugin for a particular compiler describes a verification state in
first-order logic for each reachable program location.

� The trusted core of the Open Verifier performs the abstract interpretation, asking the
plugin to prove entailments between states, based on a trusted model of machine
semantics.

� When a potentially unsafe instruction is encountered, the plugin is asked to prove its
safety using only the first-order state it had declared for that location.

� “Higher-order” reasoning can be replaced by logical states that don’t specify their
program counters exactly.



Example program

In Popcorn (a safe C dialect):

struct int_pair { int n1, n2; }

void incrementFirst(int_pair p) {

p.n1 = p.n1 + 1;

}

In TAL:
type int_pair ≡ word × word

incrementFirst : ∀α.{ESP : sptr({ESP : sptr(α)} :: int_pair :: α)}

MOV EAX, [ESP+4]

MOV EBX, [unroll(EAX)+0] ; an unroll coercion expands a named type definition
ADD EBX, 1

MOV [unroll(EAX)+0], EBX

RETN 4 ; RETN’s argument indicates how many extra bytes of the stack to pop off



Local state as first-order logic

Logical state at the entry to incrementFirst:
∃Γ. Γ ` MEM

∧ Γ ` int_pair ≡ word × word
∧ Γ ` ESP : sptr({ESP : sptr(α)} :: int_pair :: α)

What it means: There exists typing context Γ such that:

� Every allocated cell of the current memory contains a value of the type dictated by Γ.

� Γ’s definition of int_pair matches the program’s.

� The current value of ESP is a pointer to a stack that begins with a code pointer,
followed by an int_pair and a stack tail of the unknown type α. The code pointer
points to code that is safe if called when ESP points to a stack of type α.

Universal quantification over α is used to force the function to leave the tail of the stack
untouched.



Global state as first-order logic

� Logical state to stand for any safe jump:
∃Γ, v1, .., .vn. Γ ` MEM

∧ r1 = v1 ∧ ... ∧ rn = vn

∧ Γ ` int_pair ≡ word × word
∧ Γ ` PC : {r1 : τ1, ..., rn : τn}

∧ Γ ` {r1 = v1, ..., rn = vn} : {r1 : τ1, ..., rn : τn}

What it means:

� The program counter has a code type that is safe to jump to if each register ri has type
τi.

� The current values of the registers do have these types.

With a simple syntactic definition of what it means to have code type, we can prove that any
state satisfying this formula is one of the states already queued to be verified.



Proof obligations

When the trusted core reaches this instruction:

MOV EBX, [unroll(EAX)+0]

The state might contain:
Γ ` MEM ∧ Γ ` EAX : int_pair

The Open Verifier requires a proof that EAX is safe to dereference:

Γ ` int_pair ≡ word × word Γ ` e : int_pair
Γ ` e : word × word unroll

sa f eptr(e)
prod_sa f e

The target state will contain a new predicate Γ ` EBX : word, which must be proved like:

Γ ` m
Γ ` int_pair ≡ word × word Γ ` e : int_pair

Γ ` e : word × word unroll

Γ ` m[e] : word
prod_read_1


	Basic idea
	Example program
	Local state as first-order logic
	Global state as first-order logic
	Proof obligations

